Jump to content

Teorema e Ceva's

Nga Wikipedia, enciklopedia e lirë

Teorema e Ceva’s

[Redakto | Redakto nëpërmjet kodit]

Një nga teoremat më të rëndësishme dhe bazike në gjeometrine Euklidiane është " Teorema e Ceva's", e cila rradhitet në teoremat e konkurencave të drejtëzave, përkatësisht ka të beje me konkurencë ne nje trekëndësh.

Teorema e Ceva’s është publikuar në vitin 1678 nga Giovani Ceva .

  • Dy ose më shumë drejtëza që pritën në një pikë të vetme do ti quajmë konkurente.

Le te jenë , , pika që u takojnë brinjëve , , (respektivisht) të trekëndeshit , ashtu që segmentet , , të jenë konkurente atehere vlen sa 1e 2:



Teorema e Ceva's

Le ti shënojm me , , lartësitë e lëshuara nga kulmet , , në brinjët , dhe respektivisht . Dhe me , , lartësitë e lëshuara nga pika në brinjët , , respektivisht.

Dhe le ta shënojm syprinen e trekëndëshit me . Atëherë kemi:


Nga dy barazimet e fundit kemi:

Ngjashëm kemi se:



Duke shumëzuar anë për anë shprehjet , dhe kemi:


Teorema e Ceva’s ka përdorim të madh ,kjo teorem mund të përdoret për të treguar se lartësitë, medianet apo përgjysmoret e këndeve të trekëndëshit priten në një pike.

[Art of problem solving(aops)]


[Geometry Revisited -H. S. M. Coxeter, Samuel L. Greitzer]


--Qëndresa Kodraliu (diskutimet) 8 qershor 2014 23:36 (CEST)