Numri kompleks
Numri kompleks është përgjithësim i numrit real me ndihmën e një numri special i cili shënohet me i dhe quhet njësi imagjinare i cili sipas përkufizimit e plotëson kushtin
Numrat kompleks në fillim u zbuluan nga matematikani italian Girolamo Cardano, gjatë përpjekjeve të tij për gjetjen e zgjidhjeve të Ekuacionit të shkallës së tretë. Rregullat për shumën, ndryshimin, shumëzimin dhe pjestimin e numrave kompleks u dhanë nga mattematikani italian Rafael Bombelli. Një formalizëm më apstrakt për numrat kompleks më vonë ndërtoi matematikani irlandez William Rowan Hamilton, i cili konceptin e numrit kompleks e zgjëroi edhe më tej dhe në matematikë futi konceptin e kuaternioneve.
Përkufizimi
[Redakto | Redakto nëpërmjet kodit]Bashkësia e numrave kompleks shënohet me C, ndërsa numri kompleks në trajtën
ku dhe janë numra real dhe njësia imagjinare e cila e plotëson vetinë :. Numri real është pjesa reale dhe është pjesa imagjinare.
P.sh. për numrin kompleks 3 + 2i numri 3 është pjesa reale dhe 2 është pjesa imagjinare. Nëse , atëherë zakonisht shënojmë a = Re(z) dhe b = Im(z)
Bashkësia e numrave real R mund të kuptohet si nënbashkësi e bashkësisë së numrave kompleks C sepse ç'do numër real mund të shkruhet si numër kompleks i cili pjesën imagjinare e ka të barabartë me 0.
Përkufizimi formal
[Redakto | Redakto nëpërmjet kodit]Është e papranueshme rigorozisht që thjesht të supozojmë se ekziston një lloj numri katrori i të cilit është i barabartë me -1. Përkufizimi i tillë është intuitiv ne më poshtë do të japim përkufizimin formal apo aksiomatik. Themi se bashkësia e numrave kompleks është bashkësi e dysheve të renditura të numrave real e cila në lidhje me mbledhjen dhe shumëzimin e këtyre dysheve të renditura i plotëson kushtet
- (a, b) + (c, d) = (a + c, b + d)
- (a, b)·(c, d) = (a·c − b·d, b·c + a·d)
Pasi sipas përkufizimit të shumëzimit vlen se (0, 1)·(0, 1) = (−1, 0), ne e gjejmë i në mënyrë konstruktive duke ia shoqëruar atij dyshen e renditur (0, 1). Numrit real ia shoqërojmë dyshen (a, 0) dhe numrit real ia shoqërojmë dyshen e renditur (0, b) prandaj në përgjithësi kemi
- (a, b) =(a, 0)+(0, b)= a + ib.
Paraqitja gjeometrike e numrave kompleks
[Redakto | Redakto nëpërmjet kodit]Sipas përkufizimit të numrit kompleks si dyshe e renditur konkludojmë se numri kompleks mund të shikohet si pikë në rrafsh koordinativ këndrejt të cilin e quajmë rrafsh kompleks. Koordinatat e numrit janë x = Re(z) dhe y = Im(z)
Vlera absolute ose moduli i numrit kompleks
[Redakto | Redakto nëpërmjet kodit]Vlerë absolute ose modul i numrit kompleks , është
Vetitë kryesore janë:
- ku , poqese
Konjugacioni
[Redakto | Redakto nëpërmjet kodit]I konjuguar i numrit kompleks është numri , shënojmë . Sipas figurës, është simetrik me z ndaj boshtit
Disa nga vetitë e konjugacionit:
- ku z është i ndryshëm nga 0
Forma polare e numrit kompleks
[Redakto | Redakto nëpërmjet kodit]Diagrami nga figura djathtas sugjeron veti të ndryshme.
- Së pari distanca e pikës z nga origjina (i shënuar me r në figurën 2) njihet si vlerë absolute ose modul dhe shënohet me . Nga Teorema e Pitagorës,
Në përgjithësi largësia mes numrave kompleks jepet me , e cila e kthen bashkësinë e numrave kompleks në hapësirë metrike dhe këtu mund të fusim konceptin e limitit dhe të vazhdueshmërisë së funksioneve. Të gjitha vetitë standarde të hapësirës dydimensionale plotësohen për rrafshin kompleks duke përfshirë atë se moduli i numrit kompleks është jonegativ dhe plotësimin e jobarazimit të trkëndëshit ( for all z, w).
- Së dyti argumenti i numrit kompleks është këndi φ i dhënë në figurën 2, shënohet si . Si edhe me modulin argumenti mund të gjindet nga :
- pra ).
Vlera e φ ndryshon për një shumfish të 2π dhe përsëri jep këndin e njejtë.
Së bashku këto spjegime japin një mënyrë të re për paraqitjen e numrit kompleks në formën polare, si kombinim i vlerës së modulit këndit që ai formon me boshtin x from the polar pair (r,φ)). Këto fakte mund të shënohen në mënyra të ndryshme si p.sh
forma trigonometrike, dhe sipas Formulës së Eulerit
e cila quhet forma eksponenciale.
Operacionet në formën polare
[Redakto | Redakto nëpërmjet kodit]Operacionet si Shumëzimi, pjestimi fuqizimi dhe rrënjëzimi kur një numër kompleks është shënuar në formën polare janë mjaft të thjeshta:
- Shumëzimi
- Pjestimi
- Fuqizimi
Fuqizimi i numrit kompleks me një eksponent numër të plotë n bëhet sipas formulës:
.........Formula e De Moivreit
- Rrënjëzimi
Rrënjëzimi i numrit kompleks në formën polare gjithashtu është mjaft i thjeshtë. Ç'do numër kompleks z i cili e plotëson barazimin zn = c (për n numër i plotë pozitiv) quhet rrënja e ntë e numrit kompleks c. Nëse c nuk është i barabartë me 0, atëherë ekzistojnë gjithsejt n rrënjë të nta të numrit c. Le të jetë c = re iφ dhe ; atëherë bashkësia e rrënjëve të nta të c është:
këtu paraqet rrënjën e ntë numrit real r. Nëse c = 0, atëherë e vetmja rrënjë e ntë e c është vetë 0. Vërejmë se rrënjët ndryshojnë vetëm për një rrotullim për një kënd prej , rrënjët e nta të njëshit pra të gjitha rrënjët e c i takojnë një rreti me qendër në origjinën e sistemit koordinativ.
Lidhje të jashtme
[Redakto | Redakto nëpërmjet kodit]- Euler's work on Complex Roots of Polynomials
- John and Betty's Journey Through Complex Numbers
- MathWorld articles Complex number and Argand Diagram, and demonstration "Argand Diagram".
- Dimensions: a math film. Kapitulli 5 jep një hyrje në aritmetikën komplekse dhe për projeksionin stereografik. Kapitulli 6 diskuton për transformimet e rrafshit kompleks.