Në matematikë dhe përpunimin e sinjalit, transformimi ose shndërrimi Z konverton një sinjal në kohë diskrete, i cili është një varg numrash realë ose kompleksë, në një përfaqësim kompleks të domenit të frekuencës ( rrafshin z ose planin z ). [1][2]
Mund të konsiderohet si një njëvlershëm i kohës diskrete i transformimit të Laplasit ( domeni s ose rrafshi s ). [3] Kjo ngjashmëri është eksploruar në teorinë e llogaritjes së shkallës kohore .
Ndërsa transformimi Furier me kohë të vazhdueshme vlerësohet në boshtin vertikal të domenit s (boshti imagjinar), transformimi i Furierit në kohë diskrete vlerësohet përgjatë rrethit njësi të domenit z. Gjysmë rrafshi i majtë i domenit s hartëzohet me zonën brenda rrethit të njësisë së domenit z, ndërsa gjysma e rrafshit të djathtë të domenit s hartohet me zonën jashtë rrethit të njësisë së domenit z.
Një nga mjetet e projektimit të filtrave dixhitalë është marrja e modeleve analoge, nënshtrimi i tyre ndaj një transformimi bilinear i cili i hartëzon ato nga domeni s në domenin z, dhe më pas prodhohet filtri dixhital me inspektim, manipulim ose përafrim numerik. Metoda të tilla priren të mos jenë të sakta përveçse në afërsi të unitetit kompleks, pra në frekuenca të ulëta.
Transformimi Z mund të përkufizohet si një transformim i njëanshëm ose i dyanshëm . (Ashtu si kemi transformimin e Laplasit të njëanshëm dhe transformimin e Laplasit të dyanshëm . ) [4]
Një shembull i rëndësishëm i transformimit të njëanshëm Z është funksioni gjenerues i probabilitetit, ku përbërësja është probabiliteti që një ndryshore e rastit diskrete të marrë vlerën , dhe funksioni zakonisht shkruhet si ne kushtet e . Vetitë e shndërrimeve Z (të renditura në Transformimi Z § Properties ) kanë interpretime të dobishme në kontekstin e teorisë së probabilitetit.
ku është një shteg i mbyllur kundërorar që rrethon origjinën dhe i tëri në zonën e konvergjencës (ZK). Në rastin kur ZK është shkakësore (shih shembullin 2 ), kjo do të thotë shtegu duhet të rrethojnë të gjitha polet e .
Rajoni i konvergjencës ose zona e konvergjencës (ROC ose ZK) është grupi i pikave në planin kompleks për të cilin shuma e shndërrimit Z konvergjon (dmth. nuk shpërthen në madhësi deri në pafundësi):
Barazia e fundit lind nga seria e pafundme gjeometrike dhe barazia vlen vetëm nëse të cilat mund të rishkruhen në terma të si Kështu, ZK është Në këtë rast, ZK është rrafshi kompleks me një disk me rreze 0,5 në origjinë.
Le (ku është funksioni i hapit Heaviside ). Duke u zgjeruar në intervalin bëhet
Duke parë shumën
dhe duke përdorur sërish serinë e pafundme gjeometrike, barazia vlen vetëm nëse të cilat mund të rishkruhen në terma të si Kështu, ZK është Në këtë rast, ZK është një zonë me qendër në origjinë dhe me rreze 0,5.
Nga teorema themelore e algjebrës numëruesi ka rrënjë (që korrespondojnë me zerot e ) dhe emëruesi ka rrënjë (që korrespondojnë me polet). Rishkrimi i funksionit të transferimit në terma zerosh dhe polesh
ku eshte zero e dhe është poli i . Zerot dhe polet janë zakonisht komplekse dhe kur vizatohen në rrafshin kompleks (z-rrafsh), rezultati quhet grafiku pole-zero .
Përveç kësaj, mund të ekzistojnë edhe zero dhe pole në dhe Nëse marrim në konsideratë këto pole dhe zero, si dhe zero dhe pole të rendit të shumëfishtë, numri i zerove dhe poleve është gjithmonë i barabartë.
Duke faktorizuar emëruesin, mund të përdoret zbërthimi i pjesshëm i thyesave, dhe funksionet rezultat më pas mund të shndërrohen përsëri në domenin e kohës me shndërrimin invers. Duke vepruar kështu do të rezultonte në përgjigjen impulsive dhe ekuacionin e ndryshimit të koeficientit konstant linear të sistemit.
Nëse një sistem i tillë provokohet nga një sinjal atëherë prodhimi është Duke kryer zbërthimin e thyesave të pjesshme në dhe më pas duke marrë transformimin Z të anasjelltë, mund te gjendet . Në praktikë, shpesh është e dobishme të zbërthehet në mënyrë të pjesshme para se ta shumëzojmë atë madhësi me për të gjeneruar një formë të i cili ka terma me transformime Z të anasjellta lehtësisht të llogaritshme.
^Mandal, Jyotsna Kumar (2020). "Z-Transform-Based Reversible Encoding". Reversible Steganography and Authentication via Transform Encoding. Studies in Computational Intelligence. Vëll. 901. Singapore: Springer Singapore. fq. 157–195. doi:10.1007/978-981-15-4397-5_7. ISBN978-981-15-4396-8. ISSN1860-949X. Z is a complex variable. Z-transform converts the discrete spatial domain signal into complex frequency domain representation. Z-transform is derived from the Laplace transform.{{cite book}}: Mungon ose është bosh parametri |language= (Ndihmë!)
^Lynn, Paul A. (1986). "The Laplace Transform and the z-transform". Electronic Signals and Systems. London: Macmillan Education UK. fq. 225–272. doi:10.1007/978-1-349-18461-3_6. ISBN978-0-333-39164-8. Laplace Transform and the z-transform are closely related to the Fourier Transform. z-transform is especially suitable for dealing with discrete signals and systems. It offers a more compact and convenient notation than the discrete-time Fourier Transform.{{cite book}}: Mungon ose është bosh parametri |language= (Ndihmë!)
^Palani, S. (2021-08-26). "The z-Transform Analysis of Discrete Time Signals and Systems". Signals and Systems. Cham: Springer International Publishing. fq. 921–1055. doi:10.1007/978-3-030-75742-7_9. ISBN978-3-030-75741-0. z-transform is the discrete counterpart of Laplace transform. z-transform converts difference equations of discrete time systems to algebraic equations which simplifies the discrete time system analysis. Laplace transform and z-transform are common except that Laplace transform deals with continuous time signals and systems.{{cite book}}: Mungon ose është bosh parametri |language= (Ndihmë!)
^Jackson, Leland B. (1996). "The z Transform". Digital Filters and Signal Processing. Boston, MA: Springer US. fq. 29–54. doi:10.1007/978-1-4757-2458-5_3. ISBN978-1-4419-5153-3. z transform is to discrete-time systems what the Laplace transform is to continuous-time systems. z is a complex variable. This is sometimes referred to as the two-sided z transform, with the one-sided z transform being the same except for a summation from n = 0 to infinity. The primary use of the one sided transform ... is for causal sequences, in which case the two transforms are the same anyway. We will not, therefore, make this distinction and will refer to ... as simply the z transform of x(n).{{cite book}}: Mungon ose është bosh parametri |language= (Ndihmë!)
^Bolzern, Paolo; Scattolini, Riccardo; Schiavoni, Nicola (2015). Fondamenti di Controlli Automatici (në italisht). MC Graw Hill Education. ISBN978-88-386-6882-1.
^ abcA. R. Forouzan (2016). "Region of convergence of derivative of Z transform". Electronics Letters. 52 (8): 617–619. Bibcode:2016ElL....52..617F. doi:10.1049/el.2016.0189. {{cite journal}}: Mungon ose është bosh parametri |language= (Ndihmë!)Gabim referencash: Invalid <ref> tag; name "forouzan" defined multiple times with different content